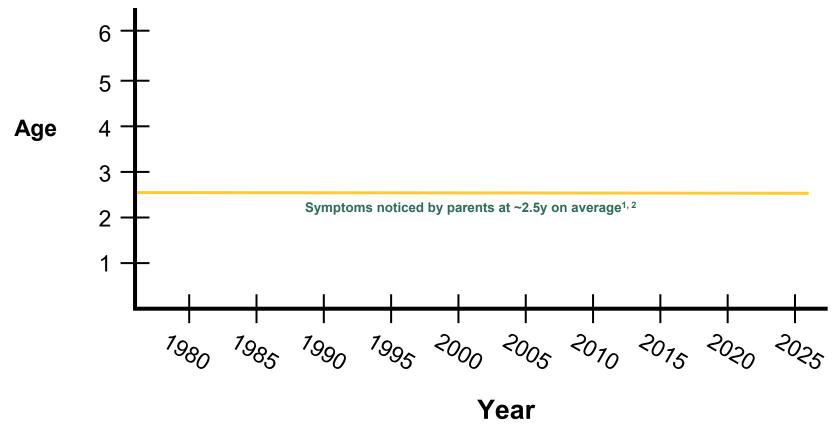
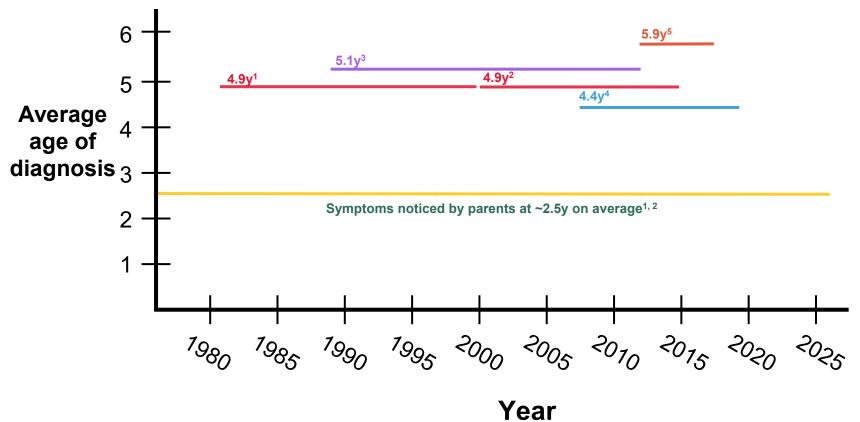

Duchenne Newborn Screening


Katherine Anderson, ScM, CGC Community Research Manager Parent Project Muscular Dystrophy

Duchenne Muscular Dystrophy


- Most common hereditary neuromuscular disease (1:5000 boys)
- Progressive muscle loss due to variants in DMD gene (dystrophin protein)
 - Damage starts in utero
- Loss of ambulation between 10-14y
- Loss of pulmonary and cardiac function
- Life expectancy increased in last ~10 years to nearly 30

Why newborn screening?

Why newborn screening?

Why newborn screening?

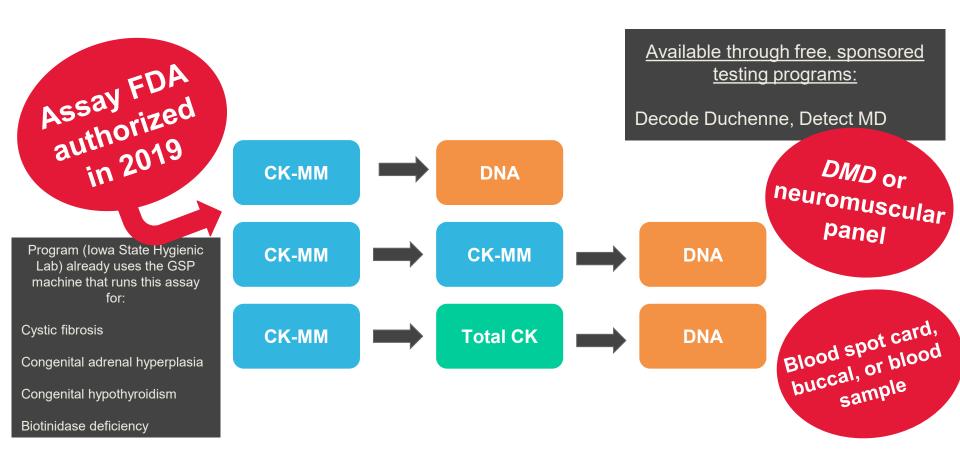
- Years of advocacy has not changed average age of diagnosis
- Avoidable costs of delayed Duchenne diagnosis for families:⁶
 - \$211,229 in medical and productivity cost
 - 20 lost days of work per year
 - 17 out-of-state trips for medical care
- Damage from delay and inappropriate testing + therapies⁷⁻⁸

Opportunity for Intervention

- Therapeutic interventions
 - 9 FDA-approved treatments (8 specific to Duchenne)
 - 5 available at any age
 - 2 available starting at age 2
 - 1 gene therapy
 - Early intervention
 - Speech/language therapy
 - Physical/occupational therapy
 - Clinical trial opportunity

Impact of Intervention

- Early Intervention Symposium
 - Earlier corticosteroids extend walking by 1-2 years^{9,10}
 - Especially pronounced when comparing boys with similar expected trajectory (similar variant)
 - Losing ambulation before ~12 leads to heart failure 5+ years sooner¹¹
 - Lung function declines over 2x faster once nonambulatory¹²


Impact of Intervention

Early Intervention Symposium

- Brothers with disparate diagnostic ages¹³
 - Brother A: Diagnosed at 6y11mo
 - Steroids at 8.5 years
 - No clinical trials
 - NSAA of 14/34 at age 9, lost ambulation at 12
 - Brother B: Diagnosed at 4 months
 - Clinical trial at 4 years
 - Steroids at 5.5 years
 - Clinical trial at 7 years
 - NSAA of 32/34 at age 9, walking well
- Differences in brothers consistently reported¹⁴⁻¹⁶

How is Duchenne NBS done?

Protocols Will Vary By State

- Thresholds for CK levels, levels impacted by¹⁷:
 - Age/birth weight at collection
 - Birth trauma
 - Sex
 - Race
 - High humidity/heat
- Piloting, validation studies, refinement tools may change protocols over time

New York¹⁸

Age at collection (h)	Borderline cutoff (ng/mL)	Referral cutoff (ng/mL)
0-47*	≥1990	≥4000
48-71	≥1430	≥4000
72-167	≥571	≥860
≥168	_	≥571

^{*}Repeat specimen requested if collected at <24h

New York¹⁸

Age at	Borderline	Referral cutoff
collection (h)	cutoffs (ng/mL)	(ng/mL)
0-47*	≥1990 ≥3000	≥4000 ≥5000
48-71	≥1430	≥4000
72-167	≥571	≥860
≥168	-	≥571

Expected to reduce repeat DBS by 82%

^{*}Repeat specimen requested if collected at <24h

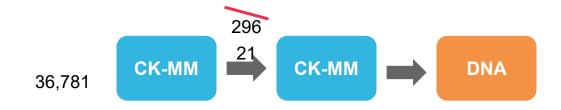
New York Pilot Post-Hoc Analysis

Mayo's Collaborative Laboratory Integrated Reports (CLIR):

- Free for use by state labs sharing data
- Pool disease data across submitting labs
- Incorporate other analytes collected to ID false positives

With New York's Data¹⁹:

- False positives have higher TSH levels than true positives
- CK-MM/TSH ratio to create true and false positive profiles
- Used on 233 available borderline cases, reduced borderlines by 93%


New York Pilot Post-Hoc Analysis

Mayo's Collaborative Laboratory Integrated Reports (CLIR):

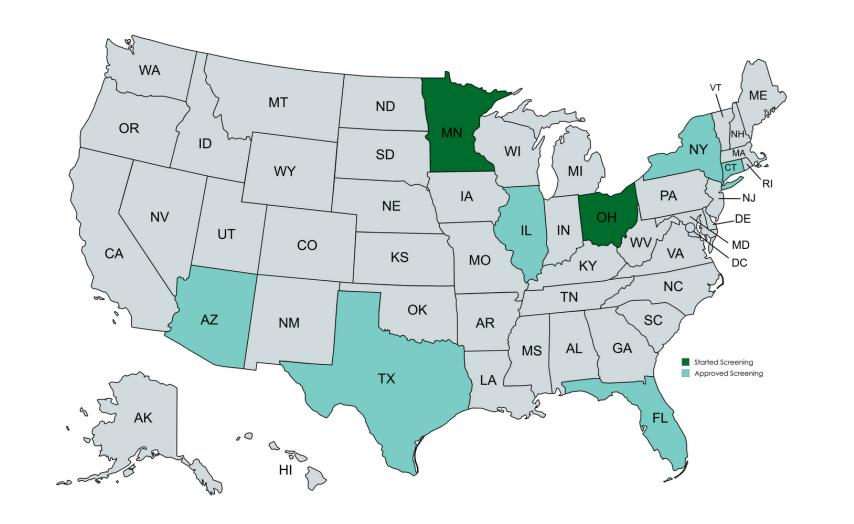
- Free for use by state labs sharing data
- Pool disease data across submitting labs
- Incorporate other analytes collected to ID false positives

With New York's Data¹⁹:

- False positives have higher TSH levels than true positives
- CK-MM/TSH ratio to create true and false positive profiles
- Used on 233 available borderline cases, reduced borderlines by 93%

Cutoffs in Active States

Minnesota


Age at collection (h)	Borderline cutoffs (ng/mL)	Referral cutoff (ng/mL)
0-47	≥1700	N/A
48-71	≥1500	N/A
72-167	≥500	N/A
≥168	N/A	≥500

2nd tier testing rate reported at APHL: 0.44% 3 referred for specialist workup

Ohio

Age at collection (h)	Borderline cutoffs (ng/mL)	Referral cutoff (ng/mL)
0-47	≥1990	≥4000
48-71	≥1430	≥4000
72-167	≥571	≥860
≥168	N/A	≥571

All babies <2000g get repeat testing

Resources to Support Clinicians + Families

- ACT Sheet already available
- Robust support resources through PPMD
- Free genetic testing through Decode Duchenne (PPMD) or Detect Muscular Dystrophy (Invitae)
- Baby Duchenne
 - Led by Drs. Bo Hoon Lee & Emma Ciafaloni (Rochester)
 - Multi-state research network
 - Characterize natural history + long-term follow up for active states

References

- 1. Ciafaloni E, Fox DJ, Pandya S, et al. Delayed diagnosis in duchenne muscular dystrophy: data from the Muscular Dystrophy Surveillance, Tracking, and Research Network (MD STARnet). *J Pediatr.* 2009;155(3):380-5.
- Thomas S, Conway KM, Fapo O, et al. Time to Diagnosis of Duchenne Muscular Dystrophy Remains Unchanged: Findings from the Muscular Dystrophy Surveillance, Tracking, and Research Network, 2000-2015. Muscle & Nerve. 2022;66(2).
- 3. Mirski KT, Crawford TO. Motor and Cognitive Delay in Duchenne Muscular Dystrophy: Implication for Early Diagnosis. *The Journal of Pediatrics*. 2014;165(5):1008-1010.
- 4. Counterman KJ, Furlong P, Wang RT, Martin AS. Delays in diagnosis of Duchenne muscular dystrophy: An evaluation of genotypic and sociodemographic factors. *Muscle & Nerve*. 2019;61(1).
- 5. Lee I, Turnage C, Sutyla R, et al. The Hidden Disease: Delayed Diagnosis in Duchenne Muscular Dystrophy and Co-Occurring Conditions. *Journal of developmental and behavioral pediatrics: JDBP*. 2022;43(8):e541-e545.
- 6. EveryLife Foundation. The Cost of Delayed Diagnosis in Rare Disease: A Health Economic Study. 2023.
- 7. Kohli R, Harris DC, Whitington PF. Relative elevations of serum alanine and aspartate aminotransferases in muscular dystrophy. J. Pediatr. Gastroenterol. Nutr. 2005; 41: 121–4.
- 8. Childers MK, Okamura CS, Bogan DJ, et al. Eccentric contraction injury in dystrophic canine muscle. Arch Phys Med Rehabil. Nov 2002;83(11):1572-8.
- 9. Bogue L, Martin A, Banks K, et al. Earlier Steroid Initiation is Associated with Later Loss of Ambulation in Participants of The Duchenne Registry. Duchenne Early Intervention Symposium. Mar 2025.

References

- 10. Peay H, Whitehead NS, Li L, et al. Impact of Early Initiation of Glucocorticoids on Progression of Duchenne Muscular Dystrophy. Duchenne Early Intervention Symposium. Mar 2025.
- 11. Schiava M, Bourke JP, Diaz-Manera J, et al. Association between age at loss of ambulation and cardiac function in adults with Duchenne muscular dystrophy. *Neuromuscular disorders*. 2025; 46.
- 12. Hnaini M, Downs M, Miller MR, et al. Duchenne muscular dystrophy respiratory profiles from real world registry data. *Pediatric Pulmonology*. 2023; 58:2725-2732.
- 18. Tian C, Nagaraj CB, Zygmunt A, & Reebals L. Duchenne siblings presented with distinct clinical outcomes. Duchenne Early Intervention Symposium. Mar 2025.
- 19. Ramos-Platt L and Darazi M. Clinical outcomes: a case series study of 3 brothers with deletion of exons 45-50. 2020 SEHA International Conference.
- 20. Armstrong N, Nagaraj CB, Paterno A, Brandsema JF. Sibling case reports in DMD: Benefits of early diagnosis and treatment. 2024 MDA Clinical & Scientific Conference.
- 21. Rye C, Main M, Muntoni F. Comparison of functional abilities in siblings with Duchenne muscular dystrophy. 2020 GOSH Conference.
- 22. Maloney B, Park S, Sowizral M, et al. Factors influencing creatine kinase-MM concentrations in newborns and implications for newborn screening for Duchenne muscular dystrophy. *Clinical Biochemistry*. 2023; 118.
- 23. Tavakoli NP, et al. Newborn screening for Duchenne muscular dystrophy: A two-year pilot study. Annals of clinical and translational neurology. 2023;10(8):1383-1396.
- 24. Tavakoli N et al. 2023 APHL/ISNS newborn screening symposium: Post-hoc analysis using CLIR post-analytical tools reduces borderline results for duchenne muscular dystrophy screening. International Journal of Neonatal Screening. 2023; 9, 54.

Thank you!